
Facing the Giant: a Grounded Theory Study of Decision-Making
in Microservices Migrations

Hamdy Michael Ayas
ayas@chalmers.se
CSE Department

Chalmers | University of Gothenburg
Gothenburg, Sweden

Philipp Leitner
philipp.leitner@chalmers.se

CSE Department
Chalmers | University of Gothenburg

Gothenburg, Sweden

Regina Hebig
hebig@chalmers.se
CSE Department

Chalmers | University of Gothenburg
Gothenburg, Sweden

ABSTRACT
Microservices migrations are challenging and expensive projects
with many decisions that need to be made in a multitude of di-
mensions. Existing research tends to focus on technical issues and
decisions (e.g., how to split services). Equally important organiza-
tional or business issues and their relations with technical aspects
often remain out of scope or on a high level of abstraction. The
objective of this study is to holistically chart the decision-making
that happens on all dimensions of a migration project towards mi-
croservices. We investigate 16 migration cases, by conducting a
grounded theory interview study with 19 participants that recently
underwent a migration. We also provide an initial validation via
a Web-based survey with 52 respondents. Our study approaches
the topic with a strong focus on the human aspect of a migration,
through stakeholders, their concerns and the decisions they need
to make as part of the migration. We identify 3 decision-making
processes consisting of 22 decision-points in total, and their typical
alternatives or options. The decision-points are related to creating
stakeholder engagement and assessing feasibility, technical imple-
mentation, and organizational restructuring. Our study provides
an initial theory of decision-making in migrations to microservices,
and outfits practitioners with a roadmap of which decisions they
should be prepared to make and at which point in the migration.

CCS CONCEPTS
• Software and its engineering → Cloud computing; Software
design engineering.
KEYWORDS
microservices, migration, decision-making, grounded theory

1 INTRODUCTION
Organizations in many industries are increasingly adopting mi-
croservices technologies to design, develop, test and maintain their
software systems. Development with microservices can happen
in new software systems, but more commonly an existing system
needs to be migrated to a microservices-based architecture (MSA)
[5]. Therefore, migrations towards microservices are increasingly
gaining popularity in both industry and academia [17]. Also, early
research and documented work on microservices demonstrates the
complexity in the nature of designing and developing microservices
[24, 33]. Hence, migrating towards microservices is also a complex
endeavour. Migrations have many activities and challenges that
need to be identified and investigated systematically [10]. Finally,
architectural migrations are naturally heavy in decision-making.

Defining the decision-making processes of such initiatives helps to
better understand them and improve their realization [2].

Migrating towards microservices can be rewarding for organi-
zations [32], but it also contains many decisions to make along
the way [8]. Consequently, it is not surprising that substantial
previous research has investigated questions surrounding microser-
vices migrations [5, 14]. These works tend to focus on technical
issues and decisions (e.g., how to split services [16, 26]) and on spe-
cific questions of software architecture [29]. Also, there are many
studies on how to technically enact the migration (e.g., through
program transformation or service identification [15]). However,
the solutions proposed are often not sufficiently satisfying in sup-
porting engineers and their decision-making during migrations
[8]. Furthermore, microservices migrations are transformative on
organizations as a whole, and the non-technical aspects of migra-
tions (e.g., how to assess the business case for the migration or
how to restructure teams) are less well-understood than the techni-
cal aspects. Research and best practices stemming from industry
provide quite comprehensive approaches on migrations, covering
many aspects [3, 25]. However, there is a gap on comprehensive
approaches that are on an abstraction level closer to the operational
choices that organizations make during migrations. Also, there is a
need in empirically understanding the details of migrations from
engineers’ point of view.

Hence, the objective of this study is to holistically chart the
decision-making processes that happen on all levels of a microser-
vices migration project, inductively from empirical evidence. A
strong emphasis is given on the multidimensional nature of migra-
tions towards microservices, considering the business and organi-
zational side, as well as the technical side. Our study approaches
the topic with a strong focus on the human aspect of a migration,
through stakeholders, their concerns and the decisions they need
to make as part of the migration. Hence, in this study we analyze
16 different cases of migrations towards microservices from 16
different organizations, via conducting a grounded theory based
interview study with 19 developers. All developers have recently
been part of a migration towards microservices. In addition, we
conduct a partial triangulation and validation through a Web-based
survey with 52 responses.
Specifically, we study the following research questions:

RQ1: What is the decision-making process of organizations during a
migration towards microservices?

RQ1.1: What are the decisions that organizations make during
a migration towards microservices?

ar
X

iv
:2

10
4.

00
39

0v
1

 [
cs

.S
E

]
 1

 A
pr

 2
02

1

RQ1.2: At what point in the migration are these decisions
made?

RQ2: What are typical options that organizations can choose in each
of these decisions?

We construct an initial theory of decision-making in an orga-
nizational level, during migrations towards microservices. The
decision-making processes we construct consist of decision-points,
typical options, and dependencies between them (e.g., follow-up
decisions based on the outcome of a previous decision). We identify
22 decision-points with their potential options. These relate to the
assessment of technical feasibility, the validation of the migration
through a business case, the technical implementation, as well as
the restructuring of the organization and its operations. Moreover,
we distinguish two types of decision-points: (1) procedural decision-
points (decisions about how to continue the migration project, i.e.,
which strategies to use), and (2) outcome decision-points (decisions
about the MSA that shall result from the migration).

Through the identified decision-making processes, we demon-
strate the choices that organizations make during the course of
a migration, from its early stages. The contents of our identified
decision-making processes first complement existing knowledge on
the benefits of microservices. We demonstrate that microservices
are not only motivated by economic gains of efficiency, but also
by gains in effectively and continuously delivering business value.
Subsequently, we demonstrate a comprehensive view of migrations
with decision-making not only on the technical dimension (e.g.
developing microservices), but also the organizational (e.g. man-
aging teams). Our focus is mainly on understanding the decisions
that stakeholders (e.g. developers, managers) make during migra-
tions and the situations they come across. We do not argue that
we provide a single source of truth on how to migrate. In fact, we
believe that such a thing does not exist due to the complexity and
socio-technical nature of organizations migrating.

2 RELATEDWORK
With migrating to microservices, organizations aim to deconstruct
their systems into smaller, independent services [12]. These ser-
vices need to be in principle decoupled from each other, with mini-
mal dependencies [24]. Also, microservices are individually owned
from responsible teams that design them around business domains
[33]. To achieve the benefits of microservices, there are design or
architectural patterns developed [30]. These patterns include or-
ganizing software systems around business capabilities, enabling
automated deployment, facilitating intelligence in the endpoints
and decentralizing the control of programming languages and data
[11]. Therefore, usually there is a large leap between a monolith
and a microservices architecture and a migration / transition is the
crucial project that takes the organization through the leap [17].

Microservices enable many benefits in the development and
operations of software systems [32]. For example, the scalability
potentials of microservices are unprecedented due to the possibility
of dynamically scaling-up and scaling-down parts of an application
[13]. Furthermore, the modular organization of systems with min-
imal dependencies, may offer improved maintainability [32] and
organizational agility [33]. Benefits in agility and maintainability

are possible in novel ways due to the independence and flexibility
of microservices development [4]. Also, characteristics of such an
architecture (e.g., infrastructure automation) enable continuous de-
livery, improving operational efficiency [27]. An efficiency example
is lowering the average size of development teams in comparison
to monolith systems, and reducing domain-specific redundancy
between microservices [23]. Hence, the proposition of migrating to
microservices enables substantial economic potential in efficiently
developing and managing complex software systems [27]. However,
the aspect of organizational and business effectiveness is equally
important [31], even though it is not studied as extensively in the
context of microservices.

Organizations are increasingly migrating their software archi-
tectures by adopting microservices and researchers are increas-
ingly investigating solutions for such transitions [17]. A substantial
amount of previous research has investigated the area surrounding
microservices migrations and their characteristics [5, 14, 29]. In
addition, there are solutions researched on how to technically enact
the migration. These solutions include splitting a system, transform-
ing the code of an application or identifying services [15]. These
solutions often provide tools on how to identify and decompose
or extract services, assuming a technical viewpoint on the migra-
tion [16]. This is not always ideal, as other aspects are neglected
that usually come along with a migration, related to managing
the entire change of an organization [25]. Industry-based research
uses influential work from the discipline of change management to
demonstrate how to lead the change of a migration. For example,
with the 8-steps model to transforming an organization [19]. Hence,
it could prove valuable to go even further in detail in such influ-
ential work, for example on specific activities on how to manage
resistance to change through education, participation, facilitation,
negotiation and coercion [20]. This will help to understand the
ways for consistently achieving the strategic alignment needed to
leverage the technology [18] of microservices in this case.

Migrations are intensive in operational decisions [8]. Just like
every transformation initiative, migrating to microservices entails
many risks to consider [22]. For example, starting from a greenfield
to migrate can be very expensive but re-factoring an established
system is a long-lasting endeavour, influenced by a broad range
of aspects [15]. In such cases, understanding the decision-making
process is beneficial [2]. Decision-making can be incorporated in all
architectural views to facilitate our understanding of systems which
is particularly valuable during change [21]. Hence, it is not only
needed to understand the criteria for decision-making in migrations
towards microservices [8], but also to understand the decision-
making processes (with their other constituent elements).

3 METHODOLOGY
Our primary research method was a grounded theory based inter-
view study with practitioners who have recently participated in a
microservice migration project. Additionally, we conducted a trian-
gulation and validation step using a Web-based survey. Interview
guide and survey materials can be found in our replication pack-
age [1]. We omit interview transcripts from the replication package
to preserve interviewee privacy and protect potential commercial
interests of our interviewee’s employers.

2

3.1 Interviews
In the interview step, we relied on techniques found in Grounded
Theory (GT) [9], namely coding, memoing, sorting, constant com-
parison and theoretical saturation. Based on guidelines for GT in
software engineering research, we cannot claim to use the classic
GTmethod. Instead, we used constructivist GT as we had significant
previous exposure to literature prior to the study [28]. Such that
some of our themes align with both, previous research [5, 17] as well
as common practitioner guidance on best practices for microser-
vices migration [25]. When conducting the interviews, we used a
semi-structured interview guide, which we constructed based on
our research questions. However, we gave participants significant
freedom to describe their own migration journeys in their own
words.

Participants: Due to the well-known challenges of recruiting a
representative sample of software developers for interview studies,
we had to rely on purposive sampling [6] and our personal network
(e.g., through current and previous projects, colleagues, or students).
Further, we used a snowballing approach, where we asked each
interviewee to refer us further to other potential participants. We
used a saturation approach [9] where we continued inviting par-
ticipants in parallel to data analysis as long as new insights were
gained. Our acceptance criteria for interviewees were (a) software
professionals (not students) who (b) have participated in or have
closely observed a microservices migration project within their pro-
fessional work. An overview of the participants is found in Table 1.
We have interviewed 19 professionals from 6 different countries
(Cyprus, UAE, Germany, Romania, Sweden, The Netherlands), of
which 18 were male and one female. Interviewers had on average
7.5 years of experience (ranging from 2 to 21) and they have worked
at medium to large companies in twelve business domains. In addi-
tion, the migration cases are about systems delivered to external
customers (e.g. Enterprise SaaS), in-house enterprise solutions for
internal users and also Software Applications sold as a service (e.g.
mobile app).

Ca
se

Int
erv
iew

Ro
le

Ex
pe
rie
nc
e

Ind
us
try

C1 I1 Full stack developer 2 (1) Enterprise Software
C2 I2 Software Engineer 2 (2) Gaming
C1 I3 Senior Team Leader 12 (2) Enterprise Software
C3 I4 Software Engineer 2 (1) Banking Software
C4 I5 Software Engineer 19 (1.5) Banking Software
C1 I6 Software Engineer 2 (1) Enterprise Software
C5 I7 Software Engineer 7 (2) Aviation Software
C6 I8 Software Developer 3 (3) Telecommunications
C7 I9 Computer Scientist 5 (5) Enterprise Software
C8 I10 Principal Software Engineer 7 (4) Cloud Computing
C9 I11 Software Engineer 6 (3) Marketing Analytics
C10 I12 Data Engineer 6 (2) Healthcare Software
C11 I13 Senior Cloud Architect 10 (5) Cloud Computing
C12 I14 Software Engineer 4 (1.5) Energy Software
C12 I15 Software Architect 4 (4) Energy Software
C13 I17 Co-founder 8 (5) Logistics / Planning
C14 I16 Software Architecture Consultant 13 (4) Logistics / Planning
C15 I18 CTO 10 (6) Manufacturing
C16 I19 Enterprise Architect 21 (5) Manufacturing

Table 1: Participants of interview study. Experience is re-
ported in years, values in brackets are years ofmicroservices
experience.

Protocol: We conducted our interviews over a period of sixmonths.
Each interview took between 30 and 60 minutes. Initial interviews
were conducted face-to-face, but due to the ongoing COVID-19
pandemic as well as geographical distance most of our interviews
had to be carried out through video conferencing. Prior to each
interview, participants were asked to sign a consent form, and con-
sent to recording the interview. Further, participants were made
aware that they can drop out of the study at any point, which no
interviewee made use of. We did not offer financial rewards to study
participants.

Analysis: In an ongoing process parallel to data collection, we
performed initial, focused and theoretical coding based on the con-
structivist variant of GT [9, 28]. In initial coding we fractured the
data to find relevant statements. In focused coding, we aggregated
and connected those excerpts into categories and themes until
achieving saturation. In theoretical coding we specified the rela-
tionships of the connected categories and integrated them into a
cohesive theory. Initial coding was conducted by the first author. All
three authors collaborated in focused coding in three card sorting
and memoing sessions lasting three to four hours each. All resulting
findings are supported by statements from multiple participants.

3.2 Web-Based Survey
Additionally, we conducted a second study step using a Web-based
survey. The surveywas targeting practitioners with interest (but not
necessarily experience) in microservices migrations, and entailed
in total 28 closed questions. Questions were designed after the
analysis of interview data was completed to validate main interview
outcomes as well as collect additional data for questions that could
not be directly answered based on the first study step. We used the
survey tool Typeform1 to implement the survey. Despite a limited
number of respondents (52 complete responses), we argue that our
survey adds to our interview findings by providing a first limited-
scale quantitative angle to our study.

We advertised our survey over social media (e.g. through LinkedIn)
and among our industrial contacts (including participants in the in-
terview study step). Survey responses were entirely anonymous and
participation was voluntary, without offering rewards for comple-
tion (neither monetary nor otherwise). Our survey had a completion
rate of 31.8% and took on average 11 minutes to complete.

3.3 Threats to Validity
We designed out research as a mixed-method study to be able
to triangulate interview results through quantitative survey data,
allowing us to mitigate some common threats inherent in interview
studies. However, some threats that are inherent in our chosen study
methodology remain, which readers should take into consideration.

External Validity. For both study steps, we cannot claim repre-
sentativeness of our study demographics for the software industry
in general, as both populations have been sampled through our per-
sonal network and using a voluntary, opt-in procedure. To mitigate
this threat, we selected interview participants to cover companies
of different sizes, in different domains, and in different geographical
regions. In the survey we avoided collecting detailed company or
1http://typeform.com/

3

geographical information to prevent de-anonymising participants.
Further, a voluntary survey design is always susceptible to self-
selection bias: respondents uninterested in the field of study are
unlikely to participate in a survey such as ours.

Internal Validity. In terms of internal validity, a threat is that
we were, through our previous interest in the field, pre-exposed
to existing research as well as the extensive practitioner-focused
guidance on how to conduct microservice migrations. This may
have biased our interview design, and may have led that some
decision-points (e.g., those not discussed in earlier work) may have
been given less prominence or judged as unimportant during anal-
ysis. In general, a limitation of our study design is that we cannot
claim that the identified list of decision-points and alternatives is
necessarily complete.

4 RESULTS
Our study shows that migrations towards microservices entail a
multitude of decisions on different dimensions and of different
types. We broadly distinguish between the decision-making process
of creating engagement, which then influences the decision-making
process on the technical dimension and the decision-making process
on the organizational dimension. On all dimensions, practitioners
encounter two types of decisions that take place in certain points
of time: procedural decision-points (i.e., points during the migra-
tion where they need to decide how to continue the migration
process) and outcome decisions-points (e.g., points during the mi-
gration where the team needs to agree on specific architectures
or technologies as outcome of the migration process). Both types
of decision-points are only infrequently restricting practitioners
to make a commitment to a single approach or technology — in-
stead, we observe that practitioners often choose to follow multiple
complementary approaches.

We now discuss decisions on creating engagement as well as
organizational and technical decisions. We also discuss their depen-
dencies and implications for migration projects, in more detail. We
generally focus on the "flow" of decision-points and common op-
tions. Note that providing an exhaustive list of all possible options
for every decisions is neither feasible nor the scope of this article.

4.1 Decisions on Creating Engagement
Decisions on creating engagement typically relate to whether a
migration is an endeavour that the organization wants to pursue
in the first place. This requires evaluating technical feasibility as
well as creating engagement with all key stakeholders. We identify
key stakeholders as top management, middle management and op-
erational personnel. Top management’s buy-in is essential, as they
act as the funding agency of the migration. Middle management
is commonly the source of knowledge about how cost reductions
or profit increases can be enacted in practice. Finally, operational
personnel (also including software developers and architects) engi-
neer the new architecture, and are responsible for the development
and delivery of the system.

We observe that the studied cases of migration projects include
decisions that address the concerns of all three of these stakeholder
groups. Firstly, technical feasibility is evaluated (predominantly

to convince the operational and middle management stakehold-
ers). Then follows the construction of convincing business cases
for top management. Therefore, creating management buy-in pre-
dominantly entails establishing a business case describing how
microservices lead to reduced costs and/or increased profits (e.g.
from a better product or service) for a strategic (and often very
expensive) migration project. It should be noted that this process
of creating and evaluating buy-in is not a one-time procedure –
instead, successful migration projects continuously evaluate and
re-evaluate if microservices are still the right fit for their project or
company.
"the microservice approach allows an iterative growth [...] we start [...] a very shallow
data inventory, then I tried to add applications on this shallow data inventory, then I
tried to drive the customer to a point where they say ’Okay’ for the next application"
-I18

4.1.1 Technical Feasibility and Exploration of Opportunities. This
first phase of the migration (depicted in Figure 1) is primarily about
exploring the (technical) potential of microservices in the organiza-
tion.

DP1

How to assess
MS feasibility and potential opportunities?

Experimentation

Create PoC

Study best
practices

Engage experts

DP2

What technologies
to experiment with? Experiment with

existing tech

Experiment with
new tech

DP3

Make (preliminary)
tech choice

DP4

Make (preliminary)
feasibility assessment

Legend:

Procedural decision-point

Outcome decision-point

Options

Choose-multiple

Choose-one

Start migration

Continue with
business assessment

Figure 1: Technical Feasibility and Exploration of Opportu-
nities

The first decision-point in this phase is how to assess microser-
vice feasibility and potential opportunities or threats (DP1). In our
interviews, we identify four options for this assessment (experimen-
tation, building proof-of-concepts or PoCs, studying best practices,
and engaging with internal or external experts). In practice, many
companies will opt for a combination of multiple or all of these
options.

As indicated in Figure 2, these options broadly fall into two
groups: experimentation and building PoCs is highly practical and
context-specific, whereas studying best practices and engaging with
experts is more theoretical and conceptual. In addition, experimen-
tation and learning from best practices are based on the knowledge
that middle management and operational personnel obtain. On the
other hand, launching a PoC and hiring a specialist are based on
practical experiences of applications.

Experimentation is typically done early to gain understanding of
the capabilities and limitations of concepts and technologies, and
to assess how they apply to the specific organization, their projects,
and products. If a company chooses to rely on experimentation
as an outcome of DP1, they face another decision, namely which
technologies to experiment with (DP2). Broadly, two options present
themselves: (1) focusing on the technologies that the company

4

Figure 2: Options to assess microservice feasibility and po-
tential opportunities or threats. Percentages indicate survey
responses (multiple selections were possible)

already uses elsewhere and has experience in (experimenting with
existing tech), (2) exploring new technologies and tools. At the
end of this activity of experimentation, an outcome decision-point
needs to be made, namely which of the technology stack(s) should
be selected – at least for the time being (DP3). Worth noting is that
experimentation might also be repeated later in the process, in
the case of needing to evaluate more new tools or technologies.
The selected technologies are then commonly the basis of one or
multiple larger PoCs.

Some companies (e.g., the employers of I1 and I16) elect to skip
this activity of experimentation, as the technologies to use are pre-
decided (e.g., the company has a technology stack that it does not
want to deviate from). In these cases, companies jump straight to
building microservice PoCs.

Creating a PoC entails building a minimum viable version of
the new system, that is then evaluated with customers or users.
Additionally, it is sometimes used to demonstrate to management
how the architecture will actually look like.
"it’s kind of an investment, because initially you have to spend some money in order to
do the experiments, and then you can gain the knowledge" -I7

In addition to practical experimentation and PoC building, or-
ganizations also use more theoretical alternatives of building up
microservice knowledge. One such option is the study of best prac-
tices, reports, blogs and courses that are available for self-learning.
Alternatively, another way to learn is through following the docu-
mentation of frameworks dedicated for microservices (e.g. Quarkus,
lagoon). Essentially, middle management and operational personnel
learn by themselves about the technology. Subsequently, they act
on this knowledge and transfer it to the rest of the organization.

Finally, organizations often hire specialists (or re-allocate from
other parts of the company) that can transmit their knowledge
and accelerate the learning process of managers and team mem-
bers. For example, organizations hire experienced individuals that
went through migrations many times in the past or have extensive
experience on a specific framework/tool.
"So we have assigned architects from the different providers that we interact with and
take advice from on how we could use what on the newest services" -I9

4.1.2 Constructing the migration’s business case. After technical
feasibility is established, the next phase is to answer the question

whether a migration also has business value, in order to engage top
management and other stakeholders in middle-management that
were not informed before (e.g. from marketing and sales).

DP5

DP6

How to explore
business effectiveness?

How to explore
business efficiency?

Conduct
Questionnaires

Design Value
Propositions

Estimate
DevOps

Improvements

Estimate SW
Quality

Improvements

Estimate
Management
Improvements

DP7

Decide on MS
business case

Start business
assessment

Continue migration

Re-start feasibility
and engagement

Terminate project

Legend:

Procedural decision-point

Outcome decision-point

Options

Choose-multiple

Choose-one

Figure 3: Constructing the migration’s business cases

As indicated in Figure 3, organizations explore the business
value of migrations along two separate axis, captured in DP5 (how
to explore business effectiveness) and DP6 (how to explore business
efficiency). Business effectiveness is about increasing the value that
an organization delivers to its customers, typically through novel
types of value-adding business services [31]. Business efficiency is
about optimizing the ways in which an organization delivers value
to customers and, thus, the operations in which value is created
[18]. These decision-points crucially rely on the information and
knowledge collected when checking on feasibility and exploring
opportunities. Predominantly these decision-points serve as input
for the construction and evaluating of the migration business case.

In DP5 (business effectiveness) organizations investigate how
they will deliver more value to customers through their products
or services. For example, organizations are able to aggregate fea-
tures more flexibly and deliver a larger variety of services that are
customized for their clients’ needs. This can allow to sell more
expensive and exclusive services, and ultimately increase profitabil-
ity. Also, this allows to reach customers that before would not be
reachable. We find that common ways to identify these opportuni-
ties are typically to (1) conducting customer questionnaires and (2)
designing new value propositions.

Conducting questionnaires can help adopt a customer-driven
approach to the migration. Our interviewees report that with ques-
tionnaires they establish communication with customers and in-
volve them in development. This can bring a better understanding
of what delivers value, and, therefore, it helps in designing new
value propositions. Trying new modes of delivering value show-
cases to customers the value that they also gain from the migration.
This enables the system’s provider to sometimes even co-fund the
migration with clients.

"we start to find the client who is more interested [...] because for sure, for them to will
become faster for maintaining the database and less time for testing as well." -I5

Another interesting point is thatmicroservices can enable smaller
offerings that are easier to sell since this allows providing cheaper
products or services with a subset of features, thus reaching smaller
organizations were not targeted before.

5

"It was one huge system and I could not say I’m going to deliver it in one or two days.
But when I do microservices, if you are a small organization, which you need to use
my system, I can do it" -I5

DP6 (business efficiency) is about information for the business
case regarding the ways in which the newmicroservice-based archi-
tecture will optimize the operations of the organization. Therefore,
in this decision we observed options in which different bottlenecks
were identified from the migration cases of this study and how
they were improved. We find that there are three broad classes of
possible improvements, some or all of which can be explored in
this phase: improvements in operations and DevOps (e.g., more
efficiency in systems operation), improvements in software quality
(e.g., better performance at scale), and improvements in manage-
ment processes (e.g., through easier recruitment of highly skilled
individuals).

The information from all options that the organization decided
to explore in DP5 and DP6 feed into the outcome decision-point
DP7 (deciding on a the microservices business case). Here, one or
multiple business cases are constructed based on all information
collected so far. The business case(s) facilitate the deliberation be-
tween stakeholders, and are used for comprehending and aligning
on both the business and technical logic of the migration. Three
alternatives present themselves as outcome of this business case
construction and assessment: either to continue with the migration
as planned (leading to commencing the technical migration), ter-
mination of the project (if obstacles are identified that seem not
possible to overcome), or to revisit the decisions of technical fea-
sibility and exploration of opportunities (e.g., if there appears to
be potential, but additional information needs to be collected, for
instance by assessing new technology or exploring additional value
propositions).
"the best way is to say in the very beginning: Okay, this is how much it cost us now,
[...] and then you say: Okay, if we move this out, then we would need that many
resources [...] and costs should go down [...] and you can also scale up and down" -I10

The business case demonstrates from a business point of view
how a microservice-based architecture can increase the focus on
value adding activities, instead of repetitive tasks and short-term
fixes. The interviews indicated to different aspects for improvement
potentials on Business Effectiveness and Business Efficiency. We
validate these aspects with the participants of our survey and we
present the most frequent ones in Table 2 and Table 3.

Measure of Effectiveness Selected in Survey
Quality & experience improvements 65%
Aggregating services to new offerings 37%
Focused / specialized offerings 26%

Table 2: Improvements in terms of business effectiveness se-
lected bymore than 25% of the survey respondents. Multiple
selections were possible.

4.2 Decisions on the Technical Dimension
Once the business case for migrating towards microservices is made,
the organization engages the technical migration. This requires a
number of additional decisions to be taken, which are summarized
in Figure 4. The decisions on the technical dimension are validated

Measure of Efficiency Selected in Survey
Scalability 67%
Maintainability 54%
Continuous deployment 44%
Flexibility in skill 37%
Lightweight application 33%
Less duplicated functionality 33%
Robustness & rigidity of system 29%
Cost reduction of development 25%

Table 3: Improvements in terms of business efficiency se-
lected bymore than 25% of the survey respondents. Multiple
selections were possible.

through the survey and the percentage depicted in the figure in-
dicate how often the different options have been chosen by the
survey respondents.

The first technical decision-point is DP8 (what is the high-level
migration strategy). Specifically, themigration cases we investigated
revealed three alternative approaches tomigrating a system towards
microservices.

One alternative is to start the migration with architecting and
developing a new system on the green field (from scratch). This
means that the monolith is not altered in any way and a new system
is developed entirely from the beginning. This case includes radical
refactoring activities and usually leads to simultaneously devel-
oping and operating two systems until the microservice system
is ready and the monolith can be turned off. Interestingly, this is
the least popular option across survey respondents, with only 12%
choosing it.

On the other hand, the options are gradually decomposing the
monolith, retaining the monolith and building all new features as
microservices or a combination of decomposing and building new
features. These option result in a hybrid architecture, in which a
small monolith (a "microlith") lives within the microservice-based
system. The first option requires the extraction of microservices
until the monolith is decomposed. This approach is about repeat-
edly extracting from existing functionality pieces of code that can
be individual microservices, until the entire system is decomposed.
In addition, this approach is the most popular across survey re-
spondents with 45% choosing it. The second option is developing
every new feature as a microservice and then operating a hybrid
architecture until the old monolith phases out (chosen by 14% of
survey respondents).

Finally, we find that a common choice (confirmed by 29% of sur-
vey respondents) is to combine gradual extraction with the reten-
tion of a "microlithic" kernel of old features. Those are for example
features that are difficult or impossible to extract as microservies.
In this case, all new features are developed with microservices prin-
ciples in mind and at the same time some features are extracted
gradually, until the application reaches a level of granularity that
is considered sufficient. More often than not, interviewees men-
tion that the perfect microservices-based architecture cannot be
achieved and the required mindset is to accept this and constantly
improve the system.

"I don’t think it’s black and white where before we had a monolith and now we have a
complete microservice architecture. It’s more like a gradual process, that might never
be completed" -I5

6

Start technical
migration

DP8

What’s the high-level
migration strategy?

Start new
system on
green field

Gradually
extract MSs

Build new
features as MS,
maintain old as

microlith

DP9

How to reuse
existing code?

DP10

On what granularity
do we split MSs?

DP11

How is the
microlith exposed?

As a library

As a service
or API

Based on
functionality

Based on
features

Based on teams

DP13

Define MSs
in existing system

DP12

Identify what
to reuse

DP14

Define migration
order

DP15

Define implementation
norms and standards

Carry over
source code

Carry over
business logic

and design

Carry over
implementations

as libraries

Enact
migration

Legend:

Procedural decision-point

Outcome decision-point

Options

Choose-multiple

Choose-one

Do-all

 45%

 14%

12%

20%

20%

31%

37%

47%

17%

51%

71%

Combination of
the other 2

options29%

Figure 4: Technical decisions for migrating towards microservices

Once the high-level migration strategy is decided, organizations
now reach decision-point DP9, and need to assess how to reuse
existing code (if anything shall be re-used at all, and if the old sys-
tem is not simply re-used in it’s entirety as a "microlith" using
the third option from above). Three different options for re-use
have emerged in our study (which can evidently be combined).
Re-using source code (e.g., by copying-and-pasting useful code),
carrying over business logic and software designs that business
analysts developed from requirements, or by encapsulating key
functionality in libraries, which are then imported in the new mi-
croservices. Carrying over business logic and designs is the most
common option, with 37% of respondents doing so. Carrying over
implementations as libraries is the least common option with 20%
of respondents doing so. Source-code is carried over by 31% of
respondents. It is worth noting that even organizations that started
from scratch often reused some artifacts in that manner, though
usually not source code. This then leads to outcome decision-point
DP12, which requires the organization to identify what concretely
shall be reused.

Organizations that decide to develop all new functionality as mi-
croservices and leave the existing system as a "microlith" within the
new architecture face a different decision-point (DP11), and need
to decide how to expose the "microlith". The two observed choices to
this end entail exposing the "microlith" as a library (similar to the
re-use of other, smaller, code elements) or to host the "microlith" as
a service or API. It is worth noting that all survey respondents that
had a "microlith" to expose they made use of a shell API.

"First step was to take the back-end as a whole, as one piece out of the front-end and
connect them with one big library that is imported in the UI. And then we built on
API around it and that’s where we could have a back-end and the front end." -I11

Independently of their choice in DP8, an organization now also
needs to decide on which granularity microservices shall be split
(DP10). For organizations starting on a green field or which grad-
ually extract microservices, this decision applies to the services

representing existing code. However, even if the old system shall be
retained as a "microlith" this decision needs to be made for new ser-
vices. The first option here (chosen by 71% of survey respondents)
is to split services based on the functionality of the microservice,
i.e., based on functions (for example sorting) or architectural lay-
ers (for example front-end). The second option (chosen by 51% of
survey respondents) is to split microservices based on features, i.e.,
designing microservices that are small end-to-end applications that
go through the entire development stack. The third option (cho-
sen by 17% of survey respondents) is to align the service structure
with existing team structures. For example, if teams are in different
geographic locations and time-zones and work independently on
different tasks, the microservices are designed to accommodate this
particularity. Finally, a rule of thumb we observed is achieving the
required level of granularity by keeping a microservice independent
as long as the code required for communication is smaller than the
code required to implement the microservice.

"There’s always an amount of code and logic needed, just to get a service up and running
[...] and if it is bigger than the actual business logic part of the service, then [...] it is
too small and I figure out where it can fit instead." -I15

At this point in the migration the organization has made most
planning-related decisions. What is still left to do are three outcome
decision-points, where the organization takes in all decisions and
lessons learned so far to decide on the actual structure of their new
system. These decisions start with DP13 (define what microservices
the new system should contain).

Then in DP14, (define the order of migration) we accumulated the
most common activities of migrations and we order them chrono-
logically, as shown in Figure 5. We observe from the interviews
6 main activities that constitute a migration and we ask survey
respondents to sort them in chronological order. This order show-
cases a tendency of engineers to order migrations in splitting the
back-end, then the database, then DevOps, then microservices com-
munications and finally reorganizing teams.

7

Finally, DP15 (define new implementation norms and standards)
allows to establish the governance for scaling the migration to cover
most parts of the system.
"For it to make sense, you want it to scale across the organization and across the
enterprise. And then you need to have kind of a strong governance within that
organization" -I13

Figure 5: Distribution of orderedmigration activities (by sur-
vey respondents) showing the order of migration based on
popularity

Furthermore, these final decisions entail also concerns that in-
terviewees thought are important to address early in the migration,
since many migration cases showed evidence that neglecting or
postponing some aspects entail risks.
"There were some things that should be said from the very beginning in order to avoid
latter additional efforts." -I2

For example, I7 mentions security and how it became a challenge
to address later on if neglected in the migration.
"security is neglected from the start, making it hard to add it later on" -I17

Another example is how not re-developing logging mechanisms
and exception or error handling leads to costly future work.
"We started in the beginning, doing the development without deciding what the type of
our logs will be, how we’ll do the exception handling [...] and now someone should go
back to all the development that we did and put logs and put the correct errors and
exceptions." -I2

4.3 Decisions on the Organizational Dimension
Moreover, a migration entails a set of decisions that are taken to
restructure the organization as well as the organization’s opera-
tions. The objective is typically to lead operations in the direction
of achieving the estimated benefits from the business case. An-
other objective is to align business with the new capabilities and
requirements of the new technology, that come from the decisions
of Section 4.2. We identify the constituent organizational decision-
points, as summarized in Figure 6.

The first organizational decision-point is DP16 (how to drive the
migration and maintain control on it). A migration typically takes a
significant amount of time to complete and organizations use two

options to maintain a stable track towards the new architecture.
One option observed is to distribute responsibilities to developers.
The rationale is usually to distribute the migration activities in the
entire organization. Hence, organizations avoid the risk of having
isolated knowledge for the migration, that is not systematized or
validated throughout the entire organization. The other option is
to dedicate a team specifically responsible for the migration. This
can eliminate the perception that the migration is a project on the
side, since a specialized team makes the project a main contributor
to the organization’s strategy. The rationale is also to accelerate
the learning curve of the organization on MSA, by dedicating a
specialized team to the new technologies.

"Some team needs to work on the the new product and you need to allocate some people
and to invest with them" -I4

These two options also seem to relate on the mutual understand-
ing between stakeholders on how to make the migration’s decisions.
This is basically the decision-making process of the migration to-
wards microservices, which normally requires consensus building
and alignment between varied stakeholders. This consensus can
either be established top-down (through management decisions,
e.g., in case of I12) or bottom-up (through extensive team discussion
and deliberation, e.g., I2 or I3). Once it is clear how the migration
will take place, organizations reach decision-point DP17 (how the
organization is getting restructured), which has three options.

The first option on restructuring the organization is by aligning
the teams’ structures with the most profitable value proposition.
For example, I5 mentions that if at a given point of time there
is a need for engineers in a very profitable project, then people
from different teams are assigned to it. I5 also mentions that this
dynamism happens quite regularly and that decisions are made
with an eye on immediate customer value.

"We started to present and see what is easier for them, especially from customer services,
[...] if there’s something that they [the customers] are more interested in." -I5

The second option is to align team-structures based on parts of
the software developed. For example, I11 distinguishes front-end
microservices from back-end microservices, having teams assigned
to each part. Finally, there is the third option with a way of orga-
nizing roles, responsibilities and ownership of services based on
the functionality and the features developed.

"break the team into smaller parts and say you and you will support this service, you
and you will support the other services”" -I3

Also, organizations reach the decision-point DP18 (how does the
development process change). Organizations optimize operations by
simplifying their process, for example through enabling parallel
development in parts of the code-base or with faster identification of
issues. We identify four options of altering the development process.
One way is through refining the agile practices adopted from the
organization. Another option is through refining the testing process.
Additionally, another option way of process change is enabling the
independent development from developers. Finally, an identified
option is aligning with business analysis and ways of extracting or
communicating requirements throughout the process.

8

DP16

How to drive the migration
and maintain control on it?

Distribute
responsibilities
to developers

Dedicate a
migration task-

force

Start organisational
migration

Legend:

Procedural decision-point

Outcome decision-point

Options

Choose-multiple

Choose-one

DP17

DP18

DP19

How can the migration
restructure the organization?

How does the migration change
the development process?

How do people develop their
skills in the migration?

Align teams
with more

profitable VPs

Structure
based on part
of software

Align structure
based on

functionality

Refine Agile
Practices

Refine Testing
Process

Align with
business

analysis / reqs

Enable
independent
development

(In)formal
education

Cultural /
mindset
changes

DP20

Define new
Organisation structures

DP21

Define new
Operational Model

DP22

Define knowledge
sharing strategy

Enact
migration

Do-all

Figure 6: Restructuring the organizational structures and operations

"the guys that were writing the functional specs, you know the business requirements
basically, they have to somehow map their ideas and their designs to specific mi-
croservices somehow" -I3

We evaluate through the survey how the options from DP17 and
DP18 resonate with developers and present a summary of responses
in Figure 7.

Figure 7: Diverging bar chart on the options in which oper-
ations change and organizations restructure (ordered as in
Figure 6)

The next decision-point is DP19, or how do people develop their
skills and knowledge in migrations? Many interviewees mentioned
cultural changes that need to take place and the learning curve
required to take in order to succeed in the migration.

"People needed to educate and train a lot. So, the company invested on that one as well,
to train people" -I3

We identify two options for DP19, coming from the fact that
migrations change the expectations on engineers and management

in terms of knowledge. The first option is to provide (in)formal
education of the new technologies, tools and frameworks. Most
importantly, the second option is giving time to experience the
new architecture and develop knowledge in terms of learning a
new paradigm of development and transforming the mindset and
culture accordingly.

"Also, maybe change of the mindset of some people as well. Both design people and
developers" -I3

Finally, the decision-making process of the organizational and
operational restructuring concludes with three outcome decision-
points. In DP20 organizations define the new organizational struc-
tures and in DP21 define the new operational model. DP22 is to define
the knowledge sharing strategy of the organization and how skills
will be propagated across the organization.

5 DISCUSSION
Decision-making typically happens in an individual level, group
level and organizational level. The focus of our findings is on the
complex decisions that take place on an organizational level.

Multidimensionality of migrations: First, our findings show that
migrations towards microservices are not only about technolog-
ical change, but also about other dimensions. For example, mi-
croservices often facilitate potential cross-team collaboration and
autonomy of teams. This, in combination with how teams struc-
tures change, shows us how microservices are not only a software
architecture but also an enabler of organizational restructuring.
Migrations are long procedures that entail changes in business,
organization, culture, mindset, roles, skills and of course, technol-
ogy. The dimensions we identify are in line with socio-technical
systems engineering, containing organizational structures (Section
4.3), processes (contents of decision-making processes), technolo-
gies (Section 4.2) and of course people (stakeholders) [7]. Addi-
tionally, we demonstrate how to achieve comprehensive strategic
alignment to leverage microservices for delivering strategic value

9

[18]. Specifically, this takes place by including the aspect of busi-
ness effectiveness [31] in decision-making and considering how
it will increase the delivery of value to customers and users. For
example, through new sales models and also through the delivery
of new business value from aggregating different combinations of
services. The aspect of business effectiveness complements existing
work on the economics of microservices that demonstrate how the
architecture improves efficiency [27].

Human-centered approach in microservices migrations: Adopting
a value-based approach can help to accommodate the needs of all
stakeholders and achieve stronger engagement. Decision-making
mechanisms of migrations are often not centralized, spanning from
board-room level, to operational level. Some of the most complex
and under-studied aspects during migrations are the dynamics
between stakeholders in decision-making. We address this gap
by aggregating a set of decisions that organizations make during
migrations. Our theory contributes by providing a process for un-
derstanding the different perspectives and incentives that usually
prevail among different stakeholders. We evolve existing knowl-
edge of decision-making in different stakeholders views [21], by
demonstrating in detail these decisions and the point in which they
are made.

For example, to ensure the engagement of key stakeholders
from within the organization it is essential to consider both their
business-oriented or technical-oriented backgrounds and roles. A
business case is the framework of demonstrating the value that a
microservices-based architecture can bring to different stakehold-
ers. The demonstrated value ranges from aspects like increasing
profitability of products and services, to potentially tackling tal-
ent scarcity (due to polyglot nature) and fast on-boarding of new
employees (microservices are, at least in theory, small and easily
comprehensible).

A pragmatic view on microservices migrations: In addition, a com-
mon view of all interviews was that microservices is not a silver
bullet and their benefits need to be justified properly and as early
as possible. Otherwise, organizations might unjustly choose to mi-
grate in cases that do not fit with the architecture. This can lead to
failed migrations and a negative attitude towards the technology,
despite the fact that in different cases from those attempted the
architecture might be a better fit. In addition, some organizations
consider the technical overhead that comes with microservices not
worthy of the effort in certain cases. Even though a MSA has many
benefits, organizations should still consider alternatives like keep-
ing a monolith, purchasing a software-as-a-service, or outsourcing
development.

Moreover, our decision-making processes are modeled as linear,
mainly for visualization purposes of showing the points in which
decisions need to be made. However, these decision-making pro-
cesses have a more iterative nature in practice, i.e., they re-occur
during a migration. It is important to maintain a dynamism in teams
during migrations. Many interviewees even mentioned the need
to designing the system with flexibility, giving space to update, ex-
tend and modify it. The core of migration projects is continuously
unravelling or highlighting architectural design inefficiencies and
actively eliminating them, through decision-making. For example,
when organizations decide what to reuse, they make a selection

of designs that are worthy to be in the system, throwing away the
rest.

Relations and dependencies among decisions: We also identify the
typical activities that a migration entails and a common order of
these activities. The different ways in which organization evalu-
ate and explore the value from microservices can influence the
course that the migration will eventually take. For example, an
organization that starts by exploring the potential of microservices
with experimentation and a PoC leads the migration to a particular
path. This can help to gain more accurate estimates of tasks or
of the technical capabilities and limitations. Hence, planning can
happen with a better understanding of the time needed and the
potential risks. In addition, early decisions can sometimes influence
also subsequent decisions. For example, organizations that validate
novel value with customers, can manage to strongly engage top
management, increasing the support to the migration.

Also, the three predominant options of the technical dimension
that we observe is similarly to existing industry practices [25]. The
approach of re-developing a system on a green-field seems quite
radical but has some advantages of having a clean architecture
more easily. On the other hand, gradually decomposing a system
enables better usage of older artifacts and therefore, faster delivery.
Developing only new features as microservices can also take place
in software that has short life span in usage and the monolith will
naturally be outdated at some point in time. These approaches also
hint on the differences between "gradually dialing" to microservices
versus "radically jumping" to microservices.

6 CONCLUSION
In this paper, we investigate how software engineers and organi-
zations go through migrations towards microservices. Specifically,
we obtain an understanding on the different decisions involved
in migrations along with their interplay. The 16 different cases of
migrations towards microservices that we investigate in this study
reveal to us details on the different dimensions of decision-making
during migrations. On one hand, a set of decisions take place in
order to prove the technical feasibility of a microservices-based
architecture. On the other hand, there are decisions regarding the
driving forces for pursuing a migration on the first place and how
engagement is achieved. This shows how to create the required
"buy-in" in order to make a microservices migration get in grips
across the organization. In addition, we see decision-points that
take place on the technical dimension and how these resonate with
decision-points that take place in an organizational and operational
level. Importantly, we see how these dimensions are complement-
ing each other to motivate migrations more strongly and make
more aware steps of change. The decisions taken during the migra-
tion towards MSA along with their alternative options are partially
validated via a survey that 52 professionals responded to.

ACKNOWLEDGMENTS
This work was done as part of TrAF-Cloud funded by the Swedish
innovation agency VINNOVA (proj.no. 2018-05010). We would also
like to express our appreciation to all the participants of the study
for their time, support and valuable insights during the interviews
and the survey.

10

REFERENCES
[1] 2021. Decision-Making in Microservices Migrations. Zenodo. https://doi.org/10.

5281/zenodo.4561793
[2] Deepika Badampudi, Krzysztof Wnuk, Claes Wohlin, Ulrik Franke, Darja Smite,

and Antonio Cicchetti. 2018. A decision-making process-line for selection of
software asset origins and components. Journal of Systems and Software 135
(2018), 88–104. https://doi.org/10.1016/j.jss.2017.09.033

[3] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. [n.d.]. Microservices
architecture enables devops: an experience report on migration to a cloud-native
architecture. IEEE Software 33 ([n. d.]), 1–1.

[4] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. 2016. Microservices
Architecture Enables DevOps: Migration to a Cloud-Native Architecture. IEEE
Software 33, 3 (2016), 42–52. https://doi.org/10.1109/MS.2016.64

[5] Armin Balalaie, Abbas Heydarnoori, Pooyan Jamshidi, Damian A. Tamburri, and
Theo Lynn. 2018. Microservices migration patterns. Software - Practice and
Experience 48, 11 (nov 2018), 2019–2042. https://doi.org/10.1002/spe.2608

[6] Sebastian Baltes and Paul Ralph. 2020. Sampling in Software Engineering
Research: A Critical Review and Guidelines. CoRR abs/2002.07764 (2020).
arXiv:2002.07764 https://arxiv.org/abs/2002.07764

[7] G. Baxter and I. Sommerville. 2011. Socio-technical systems: From designmethods
to systems engineering. Interacting with Computers 23, 1 (2011), 4–17. https:
//doi.org/10.1016/j.intcom.2010.07.003

[8] L. Carvalho, A. Garcia, W. K. G. Assunção, R. de Mello, and M. Julia de Lima.
2019. Analysis of the Criteria Adopted in Industry to Extract Microservices.
In 2019 IEEE/ACM Joint 7th International Workshop on Conducting Empirical
Studies in Industry (CESI) and 6th International Workshop on Software Engineering
Research and Industrial Practice (SER IP). 22–29. https://doi.org/10.1109/CESSER-
IP.2019.00012

[9] Kathy Charmaz. 2014. Constructing grounded theory. sage.
[10] P. Di Francesco, P. Lago, and I. Malavolta. 2018. Migrating Towards Microservice

Architectures: An Industrial Survey. In 2018 IEEE International Conference on
Software Architecture (ICSA). 29–2909. https://doi.org/10.1109/ICSA.2018.00012

[11] Paolo Di Francesco, Patricia Lago, and Ivano Malavolta. 2019. Architecting with
microservices: A systematic mapping study. Journal of Systems and Software 150
(2019), 77–97. https://doi.org/10.1016/j.jss.2019.01.001

[12] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel Mazzara,
Fabrizio Montesi, Ruslan Mustafin, and Larisa Safina. 2017. Microservices: Yester-
day, Today, and Tomorrow. Springer International Publishing, Cham, 195–216.
https://doi.org/10.1007/978-3-319-67425-4_12

[13] Nicola Dragoni, Ivan Lanese, Stephan Thordal Larsen, Manuel Mazzara, Ruslan
Mustafin, and Larisa Safina. 2018. Microservices: How To Make Your Application
Scale. In Perspectives of System Informatics, Alexander K. Petrenko and Andrei
Voronkov (Eds.). Springer International Publishing, Cham, 95–104.

[14] J. Fritzsch, J. Bogner, S. Wagner, and A. Zimmermann. 2019. Microservices
Migration in Industry: Intentions, Strategies, and Challenges. In 2019 IEEE In-
ternational Conference on Software Maintenance and Evolution (ICSME). 481–490.
https://doi.org/10.1109/ICSME.2019.00081

[15] Jonas Fritzsch, Justus Bogner, Alfred Zimmermann, and Stefan Wagner. 2018.
From monolith to microservices: A classification of refactoring approaches. In In-
ternational Workshop on Software Engineering Aspects of Continuous Development
and New Paradigms of Software Production and Deployment. Springer, 128–141.

[16] Michael Gysel, Lukas Kölbener, Wolfgang Giersche, and Olaf Zimmermann. 2016.
Service Cutter: A Systematic Approach to Service Decomposition. In Service-
Oriented and Cloud Computing, Marco Aiello, Einar Broch Johnsen, Schahram
Dustdar, and Ilche Georgievski (Eds.). Springer International Publishing, Cham,
185–200.

[17] Sara Hassan, Rami Bahsoon, and Rick Kazman. 2020. Microservice transition and
its granularity problem: A systematic mapping study. Software - Practice and Expe-
rience 50, 9 (2020), 1651–1681. https://doi.org/10.1002/spe.2869 arXiv:1903.11665

[18] J. C. Henderson and H. Venkatraman. 1999. Strategic alignment: Leveraging
information technology for transforming organizations. IBM Systems Journal 38,
2.3 (1999), 472–484. https://doi.org/10.1147/SJ.1999.5387096

[19] John P Kotter et al. 1995. Leading change: Why transformation efforts fail. (1995).
[20] John P Kotter and Leonard A Schlesinger. 1979. Choosing strategies for change.

(1979).
[21] Philippe Kruchten, Rafael Capilla, and Juan Carlos Duenas. 2009. The Decision

View’s Role in Software Architecture Practice. IEEE Software 26, 2 (mar 2009),
36–42. https://doi.org/10.1109/MS.2009.52

[22] Jyhjong Lin, Lendy Chaoyu Lin, and Shiche Huang. 2016. Migrating web applica-
tions to clouds with microservice architectures. In 2016 International Conference
on Applied System Innovation, IEEE ICASI 2016. Institute of Electrical and Elec-
tronics Engineers Inc. https://doi.org/10.1109/ICASI.2016.7539733

[23] Genc Mazlami, Jurgen Cito, and Philipp Leitner. 2017. Extraction of Microser-
vices from Monolithic Software Architectures. In Proceedings - 2017 IEEE 24th
International Conference on Web Services, ICWS 2017. Institute of Electrical and
Electronics Engineers Inc., 524–531. https://doi.org/10.1109/ICWS.2017.61

[24] Sam Newman. 2015. Building microservices: designing fine-grained systems. "
O’Reilly Media, Inc.".

[25] Sam Newman. 2019. Monolith to microservices: evolutionary patterns to transform
your monolith. O’Reilly Media.

[26] Zhongshan Ren, Wei Wang, Guoquan Wu, Chushu Gao, Wei Chen, Jun Wei, and
Tao Huang. 2018. Migrating Web Applications from Monolithic Structure to
Microservices Architecture. In Proceedings of the Tenth Asia-Pacific Symposium
on Internetware (Beijing, China) (Internetware ’18). Association for Computing
Machinery, New York, NY, USA, Article 7, 10 pages. https://doi.org/10.1145/
3275219.3275230

[27] A. Singleton. 2016. The Economics of Microservices. IEEE Cloud Computing 3, 5
(2016), 16–20. https://doi.org/10.1109/MCC.2016.109

[28] Klaas Jan Stol, Paul Ralph, and Brian Fitzgerald. 2016. Grounded theory in
software engineering research: A critical review and guidelines. Proceedings
- International Conference on Software Engineering 14-22-May-2016, Aug 2015
(2016), 120–131. https://doi.org/10.1145/2884781.2884833

[29] D. Taibi, V. Lenarduzzi, and C. Pahl. 2017. Processes, Motivations, and Issues
for Migrating to Microservices Architectures: An Empirical Investigation. IEEE
Cloud Computing 4, 5 (2017), 22–32. https://doi.org/10.1109/MCC.2017.4250931

[30] Johannes Thönes. 2015. Microservices. IEEE software 32, 1 (2015), 116–116.
[31] N. Venkatraman and Vasudevan Ramanujam. 1986. Measurement of Business

Performance in Strategy Research: A Comparison of Approaches. Academy of
Management Review 11, 4 (1986), 801–814. https://doi.org/10.5465/amr.1986.
4283976 arXiv:https://doi.org/10.5465/amr.1986.4283976

[32] Uwe Zdun, Erik Wittern, and Philipp Leitner. 2020. Emerging Trends, Challenges,
and Experiences in DevOps and Microservice APIs. IEEE Software 37, 1 (jan 2020),
87–91. https://doi.org/10.1109/MS.2019.2947982

[33] Olaf Zimmermann. 2017. Microservices tenets: Agile approach to service devel-
opment and deployment. Computer Science - Research and Development 32, 3-4
(jul 2017), 301–310. https://doi.org/10.1007/s00450-016-0337-0

11

https://doi.org/10.5281/zenodo.4561793
https://doi.org/10.5281/zenodo.4561793
https://doi.org/10.1016/j.jss.2017.09.033
https://doi.org/10.1109/MS.2016.64
https://doi.org/10.1002/spe.2608
http://arxiv.org/abs/2002.07764
https://arxiv.org/abs/2002.07764
https://doi.org/10.1016/j.intcom.2010.07.003
https://doi.org/10.1016/j.intcom.2010.07.003
https://doi.org/10.1109/CESSER-IP.2019.00012
https://doi.org/10.1109/CESSER-IP.2019.00012
https://doi.org/10.1109/ICSA.2018.00012
https://doi.org/10.1016/j.jss.2019.01.001
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1109/ICSME.2019.00081
https://doi.org/10.1002/spe.2869
http://arxiv.org/abs/1903.11665
https://doi.org/10.1147/SJ.1999.5387096
https://doi.org/10.1109/MS.2009.52
https://doi.org/10.1109/ICASI.2016.7539733
https://doi.org/10.1109/ICWS.2017.61
https://doi.org/10.1145/3275219.3275230
https://doi.org/10.1145/3275219.3275230
https://doi.org/10.1109/MCC.2016.109
https://doi.org/10.1145/2884781.2884833
https://doi.org/10.1109/MCC.2017.4250931
https://doi.org/10.5465/amr.1986.4283976
https://doi.org/10.5465/amr.1986.4283976
http://arxiv.org/abs/https://doi.org/10.5465/amr.1986.4283976
https://doi.org/10.1109/MS.2019.2947982
https://doi.org/10.1007/s00450-016-0337-0

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Interviews
	3.2 Web-Based Survey
	3.3 Threats to Validity

	4 Results
	4.1 Decisions on Creating Engagement
	4.2 Decisions on the Technical Dimension
	4.3 Decisions on the Organizational Dimension

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

